Nanomechanics of Protein Unfolding Outside Protease Nanopores
نویسندگان
چکیده
منابع مشابه
Single-molecule protein unfolding in solid state nanopores.
We use single silicon nitride nanopores to study folded, partially folded, and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of beta-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore whe...
متن کاملElectroosmotic Flow Reversal Outside Glass Nanopores
We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt co...
متن کاملHierarchical Chemo-nanomechanics of Proteins: Entropic Elasticity, Protein Unfolding and Molecular Fracture
Proteins are an integral part of nature’s material design. Here we apply multiscale modeling capable of providing a bottom-up description of the nanomechanics of chemically complex protein materials under large deformation and fracture. To describe the formation and breaking of chemical bonds of different character, we use a new reactive force field approach that enables us to describe the unfo...
متن کاملChemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores.
Single-molecule experimental techniques have recently shown to be of significant interest for use in numerous applications in both the research laboratory and industrial settings. Although many single-molecule techniques exist, the nanopore platform is perhaps one of the more popular techniques due to its ability to act as a molecular sensor of biological macromolecules. For example, nanopores ...
متن کاملJournal of Mechanics of Materials and Structures HIERARCHICAL CHEMO-NANOMECHANICS OF PROTEINS: ENTROPIC ELASTICITY, PROTEIN UNFOLDING AND MOLECULAR FRACTURE
Proteins are an integral part of nature's material design. Here we apply multiscale modeling capable of providing a bottom-up description of the nanomechanics of chemically complex protein materials under large deformation and fracture. To describe the formation and breaking of chemical bonds of different character, we use a new reactive force field approach that enables us to describe the unfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.2288